If there are radial pressures
or pulls distributed uniformly along
either the inner or outer perimeter of the disk, these stresses shall be superimposed upon the inertia
stresses calculated here.
Stresses, moments, and
shears due to balanced forces (including gravity) shall also be superimposed upon calculated
values in here.
Rotating Disk Stress Calculator:
Note: Use dot "." as decimal separator.
RESULTS |
Parameter |
Value |
Radial Tensile Stress (at any point with a distance r from the center) [σr] |
---
|
|
Tangential Tensile Stress (at any point with a distance r from the center) [σt]
|
---
|
Maximum Radial Stress [(σr)max] |
---
|
Maximum Tangential Stress [(σt)max] |
---
|
Dimensional Change in the Outer Radius [∆R] |
---
|
|
Dimensional Change in the Inner Radius [∆R0] |
---
|
Equation |
Radial tensile inertia stress [σr] |
$${ \sigma }_{ r }=\frac { 3+\upsilon }{ 8 } \cdot \rho \cdot { w }^{ 2 }\cdot
({ R }^{ 2 }+{ R }_{ 0 }^{ 2 }-\frac { { R }^{ 2 }{ R }_{ 0 }^{ 2 } }{ { r }^{ 2
} } -{ r }^{ 2 })$$ |
Tangential tensile inertia stress [σt] |
$${ \sigma }_{ t }=\frac { \rho \cdot { w }^{ 2 } }{ 8 } \cdot \left[
(3+\upsilon )\cdot ({ R }^{ 2 }+{ R }_{ 0 }^{ 2 }+\frac { { R }^{ 2 }{ R }_{ 0
}^{ 2 } }{ { r }^{ 2 } } )-(1+3\upsilon )\cdot { r }^{ 2 } \right] $$ |
Maximum radial stress [(σr)max] |
$${ { (\sigma }_{ r }) }_{ max }=\frac { 3+\upsilon }{ 8 } \cdot \rho \cdot { w
}^{ 2 }\cdot { (R-{ R }_{ 0 }) }^{ 2 }$$ |
Maximum tangential stress [(σt)max] |
$${ { (\sigma }_{ t }) }_{ max }=\frac { \rho \cdot { \omega }^{ 2 } }{ 4 }
\cdot \left[ (3+\upsilon )\cdot { R }^{ 2 }+(1-\upsilon )\cdot { R }_{ 0 }^{ 2 }
\right] $$ |
Dimensional change in the outer radius [∆R] |
$$\Delta R=\frac { \rho \cdot { \omega }^{ 2 }\cdot R }{ 4\cdot E } \cdot \left[
(1-\upsilon )\cdot { R }^{ 2 }+(3+\upsilon )\cdot { R }_{ 0 }^{ 2 } \right] $$ |
Dimensional change in the inner radius [∆R0] |
$${ \Delta R }_{ 0 }=\frac { \rho \cdot { \omega }^{ 2 }\cdot { R }_{ 0 } }{
4\cdot E } \cdot \left[ (3+\upsilon )\cdot { R }^{ 2 }+(1-\upsilon )\cdot { R
}_{ 0 }^{ 2 } \right] $$ |