Mohr's circle for 3d stress analysis calculator was developed to calculate
3d principal stresses, maximum
shear stresses, and Von Mises stress at a specific point for spatial stresses.
3d Mohr's Circle Calculator can be used to calculate
out-plane shear stress for plane stress situation. Mohr's Circle for 3d stress analysis is also
drawn according to input parameters.
Principal and maximum shear stress formulas used for the calculations are given in the "List of Equations"
section.
Note: Use dot "." as decimal separator.
RESULTS
|
Parameter |
Value |
Unit |
Principal stress-1 (σ1) |
---
|
MPa
|
Principal stress-2 (σ2) |
---
|
Principal stress-3 (σ3) |
---
|
Max shear stress -1 (τmax1) |
---
|
Max shear stress -2 (τmax2) |
---
|
Max shear stress -3 (τmax3) |
---
|
Von Mises stress (σv) |
---
|
Parameter |
Formula |
Characteristic polynomial equation |
σ3-Aσ2+Bσ-C=0 |
Polynomial coefficient (A) |
=σx+σy+σz
=σ'1+σ'2+σ'3 |
Polynomial coefficient (B) |
=σxσy+σyσz+σxσz-(τxy)2-(τyz)2-(τxz)2
=σ'1σ'2+σ'2σ'3+σ'1σ'3 |
Polynomial coefficient (C) |
=σxσyσz+2τxyτyzτxz-σx(τyz)2-σy(τxz)2-σz(τxy)2
=σ'1σ'2σ'3 |
Principal stress-1 (σ1) |
max(σ'1,σ'2,σ'3) |
Principal stress-2 (σ2) |
A-σ'1-σ'2 |
Principal stress-3 (σ3) |
min(σ'1,σ'2,σ'3) |
Max shear stress -1 (τmax1) |
(σ2-σ3)/2 |
Max shear stress -2 (τmax2) |
(σ1-σ3)/2 |
Max shear stress -3 (τmax3) |
(σ1-σ2)/2 |