Eccentric single circular hole in a plate. Stress concentration factors calculator (Kt) for tension and bending loads.
Note: Use dot "." as decimal separator.
RESULTS |
LOADING TYPE - TENSION |
|
Parameter |
Value |
Stress concentration factor [Kt]
* |
---
|
--- |
Nominal tension stress [σnom]
o |
---
|
|
Maximum tension stress (at Point-B) [σmax] |
---
|
LOADING TYPE - BENDING |
|
Parameter |
Value |
At Edge of Plate |
Stress concentration factor at point - A [KtA] * |
---
|
--- |
Nominal tension stress [σnom ] + |
---
|
|
Maximum tension stress (at Point-A) [σmax ] |
---
|
At Edge of Hole |
Stress concentration factor at point - B [KtB] * |
---
|
--- |
Nominal tension stress [σnom] x |
---
|
|
Maximum tension stress (at Point-B) [σmax ] |
---
|
|
Tension |
|
$${ K }_{ t }=3.000-3.140\frac { d }{ 2c } +3.667{ \left( \frac { d }{ 2c }
\right) }^{ 2 }-1.527{ \left( \frac { d }{ 2c } \right) }^{ 3 }$$ |
$${ \sigma }_{ nom }=\frac { P\sqrt { 1-{ \left( d/2c \right) }^{ 2 } } }{
Dt(1-d/2c) } \frac { 1-c/D }{ 1-(c/D)\left[ 2-\sqrt { 1-{ (d/2c) }^{ 2 } }
\right] } $$ |
$${ \sigma }_{ max }={ \sigma }_{ B }={ K }_{ t }{ \sigma }_{ nom }$$ |
Bending |
|
For Point B $$0\le d/2c\le 0.5,\quad 0\le c/e\le 1.0$$ |
$${ C }_{ 1 }=3.000-0.631(d/2c)+4.007{ \left( d/2c \right) }^{ 2 }$$ |
$${ C }_{ 2 }=-5.083+4.067(d/2c)-2.795{ \left( d/2c \right) }^{ 2 }$$ |
$${ C }_{ 3 }=2.114-1.682(d/2c)-0.273{ \left( d/2c \right) }^{ 2 }$$ |
$${ K }_{ tB }={ C }_{ 1 }+{ C }_{ 2 }\frac { c }{ e } +{ C }_{ 3 }{ (\frac { c
}{ e } ) }^{ 2 }$$ |
$${ \sigma }_{ nom }={ 6M }/{ t{ D }^{ 2 } }$$ |
$${ \sigma }_{ B }={ K }_{ tB }{ \sigma }_{ nom }$$ |
For Point A |
$${ C' }_{ 1 }=1.0286-0.1638(d/2c)+2.702{ \left( d/2c \right) }^{ 2 }$$ |
$${ C' }_{ 2 }=-0.05863-0.1335(d/2c)-1.8747{ \left( d/2c \right) }^{ 2 }$$ |
$${ C' }_{ 3 }=0.18883-0.89219(d/2c)+1.5189{ \left( d/2c \right) }^{ 2 }$$ |
$${ K }_{ tA }={ C' }_{ 1 }+{ C' }_{ 2 }\frac { c }{ e } +{ C' }_{ 3 }{ (\frac { c
}{ e } ) }^{ 2 }$$ |
$${ \sigma }_{ nom }={ 6M }/{ t{ D }^{ 2 } }$$ |
$${ \sigma }_{ A }={ K }_{ tA }{ \sigma }_{ nom }$$ |