Central single circular hole in finite width plate. Stress concentration factors (Kt) for tension, in-plane and simple transverse bending loads.
|
Tension |
|
For $$0\le \frac { d }{ D } \le 1$$ |
$$3.000-3.140\frac { d }{ D } +3.667{ \left( \frac { d }{ D } \right) }^{ 2
}-1.527{ \left( \frac { d }{ D } \right) }^{ 3 }$$ |
$${ \sigma }_{ nom }=P/[(D-d)t]$$ |
$${ \sigma }_{ max }={ K }_{ t }{ \sigma }_{ nom }$$ |
In-Plane Bending |
|
At the edge of hole |
Kta = 2 (independent of d/D) |
$${ \sigma }_{ nom }=6Md/[({ D }^{ 3 }-{ d }^{ 3 })t]$$ |
σmax@A =
Ktσnom |
At the edge of plate |
$${ K }_{ tb }=\frac { 2d }{ D } (\alpha ={ 30 }^{ \circ })$$ |
$${ \sigma }_{ nom }=6MD/[({ D }^{ 3 }-{ d }^{ 3 })t]$$ |
σmax@B = Ktσnom |
Simple Transverse Bending |
|
For $$0\le \cfrac { d }{ D } \le 0.3$$ and $$1\le d/t\le 7$$ |
$${ K }_{ t }=\left[ 1.793+\frac { 0.131 }{ d/t } +\frac { 2.052 }{ { \left( d/t
\right) }^{ 2 } } -\frac { 1.019 }{ { \left( d/t \right) }^{ 3 } } \right]
\times \left[ 1-1.04(d/D)+1.22{ (d/D) }^{ 2 } \right]$$ |
$${ \sigma }_{ nom }=6{ M }_{ 1 }/[(D-d){ t }^{ 2 }]$$ |
σmax@A = Ktσnom |