Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=\frac { P(L-a) }{ L }$$
|
Reaction Force 2 [R2] |
$${ R }_{ 2 }=\frac { Pa }{ L }$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-P{ \left< x-a \right> }^{ 0 }$$ |
Moment at distance x
[M] |
$$M={ R }_{ 1 }x-P{ \left< x-a \right> }$$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
Deflection at distance x [y] |
$$y={ \theta }_{ 1 }x+\frac { { R }_{ 1 }{ x }^{ 3 } }{ 6EI } -\frac { P }{ 6EI
} { \left< x-a \right> }^{ 3 }$$ |
Slope 1 [θ1] |
$${ \theta }_{ 1 }=\frac { -Pa }{ 6EIL } \left( 2L-a)(L-a \right) $$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=\frac { Pa }{ 6EIL } ({ L }^{ 2 }-{ a }^{ 2 })$$ |
Slope [θ] |
$${ \theta }={ \theta }_{ 1 }+\frac { { R }_{ 1 }{ x }^{ 2 } }{ 2EI } -\frac { P
}{ 2EI } { \left< x-a \right> }^{ 2 }$$ |
Note: In these formulas, equations in brackets "< >" are singularity
functions.
Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=\frac { { w }_{ a } }{ 2L } { (L-a) }^{ 2 }+\frac { { w }_{ L }-{
w }_{ a } }{ 6L } { (L-a) }^{ 2 }$$ |
Reaction Force 2 [R2] |
$${ R }_{ 2 }=\frac { { w }_{ a }+{ w }_{ L } }{ 2 } { (L-a) }-{ R }_{ 1 }$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-{ w }_{ a }\left< x-a \right> -\frac { { w }_{ L }-{ w }_{ a }
}{ 2\left( L-a \right) } \left< x-a \right> ^{ 2 }$$ |
Moment at distance x [M] |
$$M={ R }_{ 1 }x-\frac { { w }_{ a } }{ 2 } { \left< x-a \right> }^{ 2 }-\frac {
{ w }_{ L }-{ w }_{ a } }{ 6(L-a) } { \left< x-a \right> }^{ 3 }$$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
Deflection at distance x [y] |
$$y={ \theta }_{ 1 }x+\frac { { R }_{ 1 }{ x }^{ 3 } }{ 6EI } -\frac { { w }_{ a
} }{ 24EI } { \left< x-a \right> }^{ 4 }-\frac { { w }_{ L }-{ w }_{ a } }{
120EI(L-a) } { \left< x-a \right> }^{ 5 }$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-{ w }_{ a }\left< x-a \right> -\frac { { w }_{ L }-{ w }_{ a }
}{ 2\left( L-a \right) } { \left< x-a \right> }^{ 2 }$$ |
Slope 1 [θ1] |
$${ \theta }_{ 1 }=\frac { -{ w }_{ a } }{ 24EIL } { (L-a) }^{ 2 }\cdot ({ L }^{
2 }+2aL-{ a }^{ 2 })-\frac { { w }_{ L }-{ w }_{ a } }{ 360EIL } \cdot { (L-a)
}^{ 2 }\cdot (7{ L }^{ 2 }-6al-3{ a }^{ 2 })$$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=\frac { { w }_{ a } }{ 24EIL } { ({ L }^{ 2 }-{ a }^{ 2 })
}^{ 2 }+\frac { { w }_{ L }-{ w }_{ a } }{ 360EIL } { (L-a) }^{ 2 }(8{ L }^{ 2
}+9aL+3{ a }^{ 2 })$$ |
Slope [θ] |
$$\theta ={ \theta }_{ 1 }+\frac { { R }_{ 1 }{ x }^{ 2 } }{ 2EI } -\frac { { w
}_{ a } }{ 6EI } { \left< x-a \right> }^{ 3 }-\frac { { w }_{ L }-{ w }_{ a } }{
24EI(L-a) } { \left< x-a \right> }^{ 4 }$$ |
Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=\frac { -{ M }_{ 0 } }{ L } $$ |
Reaction Force 2 [R2] |
$${ R }_{ 2 }=\frac { { M }_{ 0 } }{ L } $$ |
Shear force at distance x [V] |
$${ V=R }_{ 1 }$$ |
Moment at distance x [M] |
$$M={ R }_{ 1 }x+{ M }_{ 0 }{ \left< x-a \right> }^{ 0 }$$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
Deflection at distance x [y] |
$$y={ \theta }_{ 1 }x+\frac { { R }_{ 1 }{ x }^{ 3 } }{ 6EI } +\frac { M_{ 0 }
}{ 2EI } { \left< x-a \right> }^{ 2 }$$ |
Slope 1 [θ1] |
$${ \theta }_{ 1 }=\frac { -{ M }_{ 0 } }{ 6EIL } (2{ L }^{ 2 }-6aL+3{ a }^{ 2
})$$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=\frac { { M }_{ 0 } }{ 6EIL } ({ L }^{ 2 }-3{ a }^{ 2 })$$ |
Slope [θ] |
$${ \theta }={ \theta }_{ 1 }+\frac { { R }_{ 1 }{ x }^{ 2 } }{ 2EI } +\frac { {
M }_{ 0 } }{ EI } \left< x-a \right> $$ |
Note: In these formulas, equations in brackets "< >" are singularity
functions. >" are singularity
functions.