Fixed Beam Deflection Formula (Both Ends Fixed)
Beam Fixed at Both Ends with Uniformly Distributed Load
Sign convention: w > 0 is downward over the segment [a, b]. Both a and b are measured from the left fixed end and must satisfy a ≤ b.
Convention: R₁ and M₁ act at the left fixed end;
R₂ and M₂ act at the right fixed end.
Positive reactions are upward and positive moments act clockwise on the beam.
Notation: \(\langle \cdot \rangle\) denotes a singularity (Macaulay) function:
\(\langle x-a\rangle^n = (x-a)^n\) for \(x \ge a\), and \(0\) otherwise.
| Parameter | Equation |
| Reaction Force 1 \([R_1]\) |
\[
R_1 = w\!\left( \frac{(L-a)^{3}-(L-b)^{3}}{L^{2}}
- \frac{(L-a)^{4}-(L-b)^{4}}{2L^{3}} \right)
\] |
| Reaction Force 2 \([R_2]\) |
\[
R_2 = w(b-a) - R_1
\] |
| Reaction Moment 1 \([M_1]\) |
\[
M_1 = w\!\left( \frac{(L-a)^{4}-(L-b)^{4}}{4L^{2}}
- \frac{(L-a)^{3}-(L-b)^{3}}{3L} \right)
\] |
| Reaction Moment 2 \([M_2]\) |
\[
M_2 = M_1 + R_1 L
- \frac{w}{2}\!\left[(L-a)^{2}-(L-b)^{2}\right]
\] |
| Shear at distance \(x\) \([V]\) |
\[
V = R_1
- w\,\langle x-a\rangle^{1}
+ w\,\langle x-b\rangle^{1}
\] |
| Moment at distance \(x\) \([M]\) |
\[
M = M_1 + R_1 x
- \frac{w}{2}\,\langle x-a\rangle^{2}
+ \frac{w}{2}\,\langle x-b\rangle^{2}
\] |
| Slope at \(x\) \([\theta]\) |
\[
\theta = \frac{M_1 x}{EI} + \frac{R_1 x^{2}}{2EI}
- \frac{w}{6EI}\,\langle x-a\rangle^{3}
+ \frac{w}{6EI}\,\langle x-b\rangle^{3}
\] |
| Deflection at \(x\) \([y]\) |
\[
y = \frac{M_1 x^{2}}{2EI} + \frac{R_1 x^{3}}{6EI}
- \frac{w}{24EI}\,\langle x-a\rangle^{4}
+ \frac{w}{24EI}\,\langle x-b\rangle^{4}
\] |
Fixed Beam with Point Load (at any position)
Sign convention: P > 0 acts downward; position a is measured from the left fixed end; reactions are positive upward.
Fixed–fixed beam with a concentrated point load at distance a from the left support.
| Parameter | Equation |
| Reaction Force 1 \([R_1]\) | \[ R_1=\frac{P}{L^{3}}(L-a)^{2}(L+2a) \] |
| Reaction Force 2 \([R_2]\) | \[ R_2=\frac{P a^{2}}{L^{3}}(3L-2a) \] |
| Shear at \(x\) \([V]\) | \[ V=R_1-P\,\langle x-a\rangle^{0} \] |
| Reaction Moment 1 \([M_1]\) | \[ M_1=-\frac{Pa}{L^{2}}(L-a)^{2} \] |
| Reaction Moment 2 \([M_2]\) | \[ M_2=-\frac{P a^{2}}{L^{2}}(L-a) \] |
| Moment at \(x\) \([M]\) | \[ M=M_1+R_1 x-P\,\langle x-a\rangle^{1} \] |
| Bending stress \([\sigma]\) | \[ \sigma=\frac{Mc}{I} \] |
| End deflections | \[ y_1=0,\quad y_2=0 \] |
| Deflection at \(x\) \([y]\) | \[
y= y_1+\theta_1 x+\frac{M_1 x^{2}}{2EI}+\frac{R_1 x^{3}}{6EI}
-\frac{P}{6EI}\,\langle x-a\rangle^{3}
\] |
| End slopes | \[ \theta_1=0,\quad \theta_2=0 \] |
| Slope at \(x\) \([\theta]\) | \[
\theta=\theta_1+\frac{M_1 x}{EI}+\frac{R_1 x^{2}}{2EI}
-\frac{P}{2EI}\,\langle x-a\rangle^{2}
\] |
Note: angled brackets \(\langle \cdot \rangle\) are singularity functions.
Fixed Beam with Applied Bending Moment
Sign convention: M > 0 is clockwise as drawn (top fibers in compression). Use negative for counter-clockwise.
| Parameter | Equation |
| Reaction Force 1 \([R_1]\) | \[ R_1=-\frac{6 M_o a}{L^{3}}(L-a) \] |
| Reaction Force 2 \([R_2]\) | \[ R_2=\frac{6 M_o a}{L^{3}}(L-a) \] |
| Shear at \(x\) \([V]\) | \[ V=R_1 \] |
| Reaction Moment 1 \([M_1]\) | \[ M_1=-\frac{M_o}{L^{2}}(L^{2}-4aL+3a^{2}) \] |
| Reaction Moment 2 \([M_2]\) | \[ M_2=\frac{M_o}{L^{2}}(3a^{2}-2aL) \] |
| Moment at \(x\) \([M]\) | \[ M=M_1+R_1 x+M_o\,\langle x-a\rangle^{0} \] |
| Bending stress \([\sigma]\) | \[ \sigma=\frac{Mc}{I} \] |
| End deflections | \[ y_1=0,\quad y_2=0 \] |
| Deflection at \(x\) \([y]\) | \[
y= y_1+\theta_1 x+\frac{M_1 x^{2}}{2EI}+\frac{R_1 x^{3}}{6EI}
+\frac{M_o}{2EI}\,\langle x-a\rangle^{2}
\] |
| End slopes | \[ \theta_1=0,\quad \theta_2=0 \] |
| Slope at \(x\) \([\theta]\) | \[
\theta=\theta_1+\frac{M_1 x}{EI}+\frac{R_1 x^{2}}{2EI}
+\frac{M_o}{EI}\,\langle x-a\rangle^{1}
\] |
Supplements
References
- Oberg, E., Jones, F. D., Horton, H. L., Ryffel, H. H. (2016). Machinery's Handbook, 30th ed. Industrial Press.
- Oberg, E., Jones, D. J., Holbrook, L. H., Ryffel, H. H. (2012). Machinery's Handbook, 29th ed. Industrial Press.
- Young, W. C., Budynas, R. G. (2002). Roark's Formulas for Stress and Strain, 7th ed. McGraw-Hill.
- Beer, F. P., Johnston, E. R. (1992). Mechanics of Materials. McGraw-Hill.