Two equal circular holes in an infinite plate. Stress concentration factors (Kt) calculator for tension loads.
Note: Use dot "." as decimal separator.
RESULTS |
LOADING TYPE - IN-PLANE NORMAL STRESSES |
|
Parameter |
Value |
UNIAXIAL TENSION PARALLEL TO ROW OF HOLES (σ1=σ ,σ2=0) |
Stress concentration factor [Kt] * |
---
|
--- |
Maximum tension stress [σ] |
---
|
|
UNIAXIAL TENSION NORMAL TO ROW OF HOLES (σ1=0 ,σ2=σ) |
Stress concentration factor for point-B [KtB]* |
---
|
--- |
Nominal tension stress [σnom] |
---
|
|
Maximum tension stress at point-B [σB] |
---
|
BIAXIAL STRESS ( σ2 = σ1) |
Stress concentration factor for point-B [KtB]* |
---
|
--- |
Nominal tension stress [σnom] |
---
|
|
Maximum tension stress at point-B [σB] |
---
|
|
Tension |
|
for 0 ≤ d/L<1 |
$${ \sigma }_{ max }={ K }_{ t }\sigma $$ |
Uniaxial tension parallel to row of holes (σ1 = σ , σ2 = 0)
$${ K }_{ t }=3.000-0.712d/L+0.271{ (d/L) }^{ 2 }$$ |
Uniaxial tension normal to row of holes (σ2 = σ , σ1 = 0)
$${ \sigma }_{ max }={ \sigma }_{ B }={ K }_{ t }{ \sigma }_{ nom }\quad ,\quad
{ \sigma }_{ nom }\quad =\frac { \sigma \sqrt { 1-{ \left( d/L \right) }^{ 2 } }
}{ 1-d/L } $$
$${ K }_{ t }=3.000-3.0018d/L+1.0099{ (d/L) }^{ 2 }$$ |
Biaxial tension (σ2 = σ, σ1 = σ)
$${ \sigma }_{ max }={ \sigma }_{ B }={ K }_{ t }{ \sigma }_{ nom }\quad ,\quad
{ \sigma }_{ nom }\quad =\frac { \sigma \sqrt { 1-{ \left( d/L \right) }^{ 2 } }
}{ 1-d/L } $$
$${ K }_{ t }=2.000-2.119d/L+2.493{ (d/L) }^{ 2 }-1.372{ (d/L) }^{
3 }$$
|