Transverse circular hole in round bar. Stress concentration factors (Kt) for tension, bending and torsion loads.
Note: Use dot "." as decimal separator.
RESULTS |
LOADING TYPE - TENSION |
|
Parameter |
Value |
Stress concentration factor [Kt]
* |
---
|
--- |
Nominal tension stress at shaft [σnom ] o |
---
|
|
Maximum tension stress due to tension load (at Point-A) [σmax
] |
---
|
LOADING TYPE - BENDING |
|
Parameter |
Value |
Stress concentration factor [Kt]
* |
---
|
--- |
Nominal tension stress at shaft [σnom ] + |
---
|
|
Maximum tension stress due to bending (at Point-A) [σmax ] |
---
|
LOADING TYPE - TORSION |
|
Parameter |
Value |
Stress concentration factor [Kt]
** |
---
|
--- |
Nominal shear stress at shaft [τnom ] x |
---
|
|
Maximum shear stress due to torsion (at Point-A) [τmax ] |
---
|
Maximum tension stress due to torsion (at Point-A) [σmax] |
---
|
Note 1: Maximum stress is occured at point A.
Note 2: * Geometry rises σnom by a factor of Kt . (Kt = σmax/σnom)
Note 3: ** Geometry rises τnom by a factor of Kt . (Kt = 2*τmax/τnom)
Note 4: o σnom = 4P/[π(D2 - d2)] (Nominal tension stress occurred due to tension load)
Note 5: + σnom= (32MD)/[π(D4-d4)] (Nominal tension stress occurred due to bending)
Note 6: x τnom = (16TD)/[π(D4-d4)] (Nominal shear stress occurred due to torsion)
|
Tension |
|
$$d/D\le 0.9\quad ,\quad 2r/D\le 0.45$$ |
$${ C }_{ 1 }=3.0$$ |
$${ C }_{ 2 }=0.427-6.770\frac { d }{ D } +22.698{ (\frac { d }{ D } ) }^{ 2
}-16.670{ (\frac { d }{ D } ) }^{ 3 }$$ |
$${ C }_{ 3 }=11.357+15.665\frac { d }{ D } -60.929{ (\frac { d }{ D } ) }^{ 2
}+41.501{ (\frac { d }{ D } ) }^{ 3 }$$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { 2r }{ D } +{ C }_{ 3 }{ \left(
\frac { 2r }{ D } \right) }^{ 2 }$$ |
$${ \sigma }_{ nom }=\frac { 4P }{ \pi ({ D }^{ 2 }-{ d }^{ 2 }) } $$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ t }{ \sigma }_{ nom }$$ |
Bending |
|
$$d/D\le 0.9\quad ,\quad 2r/D\le 0.4$$ |
$${ C }_{ 1 }=3.0$$ |
$${ C }_{ 2 }=-6.250-0.585\frac { d }{ D } +3.115{ (\frac { d }{ D } ) }^{ 2 }$$ |
$${ C }_{ 3 }=41.000-1.071\frac { d }{ D } -6.746{ (\frac { d }{ D } ) }^{ 2 }$$ |
$${ C }_{ 4 }=-45.000+1.389\frac { d }{ D } +13.889{ (\frac { d }{ D } ) }^{ 2
}$$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { 2r }{ D } +{ C }_{ 3 }{ \left(
\frac { 2r }{ D } \right) }^{ 2 }+{ C }_{ 4 }{ \left( \frac { 2r }{ D } \right)
}^{ 3 }$$ |
$${ \sigma }_{ nom }=\frac { 32MD }{ \pi ({ D }^{ 4 }-{ d }^{ 4 }) } $$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ t }{ \sigma }_{ nom }$$ |
Torsion |
|
$$d/D\le 0.8\quad ,\quad 2r/D\le 0.4$$ |
$${ C }_{ 1 }=4.0$$ |
$${ C }_{ 2 }=-6.055+3.184\frac { d }{ D } -3.461{ (\frac { d }{ D } ) }^{ 2 }$$ |
$${ C }_{ 3 }=32.764-30.121\frac { d }{ D } +39.887{ (\frac { d }{ D } ) }^{ 2
}$$ |
$${ C }_{ 4 }=-38.330+51.542\sqrt { d/D } -27.483\frac { d }{ D } $$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { 2r }{ D } +{ C }_{ 3 }{ \left(
\frac { 2r }{ D } \right) }^{ 2 }+{ C }_{ 4 }{ \left( \frac { 2r }{ D } \right)
}^{ 3 }$$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ t }{ \tau }_{ nom }$$ |
$${ \tau }_{ nom }=\frac { 16TD }{ \pi ({ D }^{ 4 }-{ d }^{ 4 }) } $$ |
$${ \tau }_{ max }={ \tau }_{ A }={ 0.5K }_{ t }{ \tau }_{ nom }$$ |