Single elliptical hole in a finite width plate. Theoretical stress concentration factors (Kt)calculator for tension and in-plane bending loads.
Note: Use dot "." as decimal separator.
RESULTS |
LOADING TYPE - TENSION |
|
Parameter |
Value |
Stress concentration factor at point A [Kt]
* |
---
|
--- |
Nominal tension stress [σnom ]
o |
---
|
|
Maximum tension stress at Point - A [σmax ] |
---
|
LOADING TYPE - IN-PLANE BENDING |
|
Parameter |
Value |
Stress concentration factor at point - A [KtA] * |
---
|
--- |
Nominal tension stress [σnom ] + |
---
|
|
Maximum tension stress at Point - A [σmax ] |
---
|
|
Tension |
|
For 0.5 ≤ a/b ≤ 10.0 |
$${ C }_{ 1 }=1.000-0.000\sqrt { a/b } +2.000a/b$$ |
$${ C }_{ 2 }=-0.351-0.021\sqrt { a/b } -2.483a/b$$ |
$${ C }_{ 3 }=3.621-5.183\sqrt { a/b } +4.494a/b$$ |
$${ C }_{ 4 }=-2.270+5.204\sqrt { a/b } -4.011a/b$$ |
$${ K }_{ tA }={ C }_{ 1 }+{ C }_{ 2 }\frac { 2a }{ D } +{ C }_{ 3 }{ (\frac {
2a }{ D } ) }^{ 2 }+{ C }_{ 4 }{ (\frac { 2a }{ D } ) }^{ 3 }$$ |
$${ \sigma }_{ nom }=P/[(D-2a)t]$$ |
$${ \sigma }_{ A }={ K }_{ tA }{ \sigma }_{ nom }$$ |
In-Plane Bending |
|
0.4 ≤ 2a/D ≤ 1.0, 1.0 ≤ a/b ≤ 2.0 |
$${ C }_{ 1 }=3.465-3.739\sqrt { a/b } +2.274a/b$$ |
$${ C }_{ 2 }=-3.841+5.582\sqrt { a/b } -1.741a/b$$ |
$${ C }_{ 3 }=2.376-1.843\sqrt { a/b } -0.534a/b$$ |
$${ K }_{ tA }={ C }_{ 1 }+{ C }_{ 2 }\frac { 2a }{ D } +{ C }_{ 3 }{ (\frac {
2a }{ D } ) }^{ 2 }$$ |
$${ \sigma }_{ nom }=12Ma/([{ D }^{ 3 }-8{ a }^{ 3 }]t)$$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ tA }{ \sigma }_{ nom }$$ |