Large circumferential groove on a circular shaft. Stress concentration factors (Kt) calculator for tension, bending and torsion loads.
Note:Use dot "." as decimal separator.
RESULTS |
LOADING TYPE - TENSION |
|
Parameter |
Value |
Stress concentration factor[Kt]
* |
---
|
--- |
Nominal tension stress at shaft [σnom ] o |
---
|
|
Maximum tension stress due to tension load (at Point-A) [σmax
] |
---
|
LOADING TYPE - BENDING |
|
Parameter |
Value |
Stress concentration factor [Kt]
* |
---
|
--- |
Nominal tension stress at shaft [σnom ] + |
---
|
|
Maximum tension stress due to bending (at Point-A) [σmax ] |
---
|
LOADING TYPE - TORSION |
|
Parameter |
Value |
Stress concentration factor [Kt]
** |
---
|
--- |
Nominal shear stress at shaft [τnom ] x |
---
|
|
Maximum shear stress due to torsion (at Point-A) [τmax ] |
---
|
Note 1: Maximum stress is occured at point A
Note 2: * Geometry rises σnom by a factor of Kt. ( Kt = σmax/σnom)
Note 3: ** Geometry rises τnom by a factor of Kt. ( Kt = τmax/τnom)
Note 4: o σnom= 4P/(πd2)
(Nominal tension stress occurred due to tension load)
Note 5: + σnom = 32M/(πd3) (Nominal tension stress occured
due to bending)
Note 6: x τnom = 16T/(πd3) (Nominal shear stress occureed
due to torsion)
|
Tension |
|
$$
0.3\quad \le \quad \frac { r }{ d } \le \quad 1.0 $$ , $$ 1.005\quad \le \quad \frac { D }{ d } \le \quad 1.10
$$ |
$${ C }_{ 1 }=-81.39+153.10(D/d)-70.49{ (D/d) }^{ 2 }$$ |
$${ C }_{ 2 }=119.64-221.81(D/d)+101.93{ (D/d) }^{ 2 }$$ |
$${ C }_{ 3 }=-57.88+107.33(D/d)-49.34{ (D/d) }^{ 2 }$$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { r }{ d } +{ C }_{ 3 }{ (\frac { r
}{ d } ) }^{ 2 }$$ |
$${ \sigma }_{ nom }=4P/\pi { d }^{ 2 }$$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ t }{ \sigma }_{ nom }$$ |
Bending |
|
$$
0.3\quad \le \quad \frac { r }{ d } \le \quad 1.0 $$ , $$ 1.005\quad \le \quad \frac { D }{ d } \le \quad 1.10
$$ |
$${ C }_{ 1 }=-39.58+73.22(D/d)-32.46{ (D/d) }^{ 2 }$$ |
$${ C }_{ 2 }=-9.477+29.41(D/d)-20.13{ (D/d) }^{ 2 }$$ |
$${ C }_{ 3 }=82.46-166.96(D/d)+84.58{ (D/d) }^{ 2 }$$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { r }{ d } +{ C }_{ 3 }{ (\frac { r
}{ d } ) }^{ 2 }$$ |
$${ \sigma }_{ nom }=32M/\pi { d }^{ 3 }$$ |
$${ \sigma }_{ max }={ \sigma }_{ A }={ K }_{ t }{ \sigma }_{ nom }$$ |
Torsion |
|
$$
0.3\quad \le \quad \frac { r }{ d } \le \quad 1.0 $$ , $$ 1.005\quad \le \quad \frac { D }{ d } \le \quad 1.10
$$ |
$${ C }_{ 1 }=-35.16+67.57(D/d)-31.28{ (D/d) }^{ 2 }$$ |
$${ C }_{ 2 }=79.13-148.37(D/d)+69.09{ (D/d) }^{ 2 }$$ |
$${ C }_{ 3 }=-50.34+94.67(D/d)-44.26{ (D/d) }^{ 2 }$$ |
$${ K }_{ t }={ C }_{ 1 }+{ C }_{ 2 }\frac { r }{ d } +{ C }_{ 3 }{ (\frac { r
}{ d } ) }^{ 2 }$$ |
$${ \tau }_{ nom }=16T/\pi { d }^{ 3 }$$ |
$${ \tau }_{ max }=\tau _{ A }={ K }_{ t }{ \tau }_{ nom }$$ |