Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=0$$ |
Reaction Force 2 [R2] |
$${ R }_{ 2 }=0$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }$$ |
Reaction Moment 1 [M1] |
$${ M }_{ 1 }=0$$ |
Reaction Moment 2 [M2] |
$${ M }_{ 2 }={ M }_{ o }$$ |
Moment at distance x
[M] |
$$M={ M }_{ 1 }+{ R }_{ 1 }x+{ M }_{ o }{ \left< x-a \right> }^{ 0 }$$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
End Deflection 1 [y1] |
$${ y }_{ 1 }=\frac { { M }_{ o }({ L }^{ 2 }-{ a }^{ 2 }) }{ 2EI } $$ |
End Deflection 2 [y2] |
$${ y }_{ 2 }=0$$ |
Deflection at distance x [y] |
$$y={ y }_{ 1 }+{ \theta }_{ 1 }x+\frac { { M }_{ 1 }{ x }^{ 2 } }{ 2EI } +\frac
{ { R }_{ 1 }{ x }^{ 3 } }{ 6EI } +\frac { { M }_{ o } }{ 2EI } { \left< x-a
\right> }^{ 2 }$$ |
Slope 1 [θ1] |
$${ \theta }_{ 1 }=\frac { -{ M }_{ o }(L-a) }{ EI } $$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=0$$ |
Slope [θ] |
$$\theta ={ \theta }_{ 1 }+\frac { { M }_{ 1 }x }{ EI } +\frac { { R }_{ 1 }{ x
}^{ 2 } }{ 2EI } +\frac { { M }_{ o } }{ EI } \left< x-a \right> $$ |
Note: In these formulas, equations in brackets "< >" are singularity
functions.
Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=0$$ |
Reaction Force 2 [R2] |
$${ R }_{ 2 }=\frac { { w }_{ a }+{ w }_{ L } }{ 2 } \cdot \left( L-a \right) $$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-{ w }_{ a }\left< x-a \right> -\frac { { w }_{ L }-{ w }_{ a }
}{ 2\left( L-a \right) } { \left< x-a \right> }^{ 2 }$$ |
Reaction Moment 1 [M1] |
$${ M }_{ 1 }=0$$ |
Reaction Moment 2 [M2] |
$${ M }_{ 2 }=-\frac { { w }_{ a } }{ 2 } { (L-a) }^{ 2 }-\frac { { w }_{ L }-{
w }_{ a } }{ 6 } { (L-a) }^{ 2 }$$ |
Moment at distance x [M] |
$$M={ M }_{ 1 }+{ R }_{ 1 }x-\frac { { w }_{ a } }{ 2 } { \left< x-a \right> }^{
2 }-\frac { { w }_{ L }-{ w }_{ a } }{ 6(L-a) } { \left< x-a \right> }^{ 3 }$$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
End Deflection 1 [y1] |
$${ y }_{ 1 }=-\frac { { w }_{ a } }{ 24EI } { (L-a) }^{ 3 }(3L+a)-\frac { { w
}_{ L }-{ w }_{ a } }{ 120EI } { (L-a) }^{ 3 }(4L+a)$$ |
End Deflection 2 [y2] |
$${ y }_{ 2 }=0$$ |
Deflection at distance x [y] |
$$y={ y }_{ 1 }+{ \theta }_{ 1 }x+\frac { { M }_{ 1 }{ x }^{ 2 } }{ 2EI } +\frac
{ { R }_{ 1 }{ x }^{ 3 } }{ 6EI } -\frac { { w }_{ a } }{ 24EI } { \left< x-a
\right> }^{ 4 }-\frac { { w }_{ L }-{ w }_{ a } }{ 120EI(L-a) } { \left< x-a
\right> }^{ 5 }$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-{ w }_{ a }\left< x-a \right> -\frac { { w }_{ L }-{ w }_{ a }
}{ 2(L-a) } { \left< x-a \right> }^{ 2 }$$ |
Slope 1 [θ1] |
$$V{ \theta }_{ 1 }=\frac { { w }_{ a } }{ 6EI } { \left( L-a \right) }^{ 3
}+\frac { { w }_{ L }-{ w }_{ a } }{ 24EI } { (L-a) }^{ 3 }$$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=0$$ |
Slope [θ] |
$$\theta ={ \theta }_{ 1 }+\frac { { M }_{ 1 }x }{ EI } +\frac { { R }_{ 1 }{ x
}^{ 2 } }{ 2EI } -\frac { { w }_{ a } }{ 6EI } { \left< x-a \right> }^{ 3
}-\frac { { w }_{ L }-{ w }_{ a } }{ 24EI(L-a) } { \left< x-a \right> }^{ 4 }$$ |
Parameter |
Equation |
Reaction Force 1 [R1] |
$${ R }_{ 1 }=0$$ |
Reaction Force 2 [R2] |
$${ R }_{ 2 }=P$$ |
Shear force at distance x [V] |
$$V={ R }_{ 1 }-P{ \left< x-a \right> }^{ 0 }$$ |
Reaction Moment 1 [M1] |
$${ M }_{ 1 }=0$$ |
Reaction Moment 2 [M2] |
$${ M }_{ 2 }=-P(L-a)$$ |
Moment at distance x
[M] |
$$M={ M }_{ 1 }+{ R }_{ 1 }x-P\left< x-a \right> $$ |
Bending stress at distance x [σ] |
$$σ=\frac { M\cdot c }{ I } $$ |
End Deflection 1 [y1] |
$${ y }_{ 1 }=-\frac { P }{ 6EI } (2{ L }^{ 3 }-3{ L }^{ 2 }a+{ a }^{ 3 })$$ |
End Deflection 2 [y2] |
$${ y }_{ 2 }=0$$ |
Deflection at distance x [y] |
$$y={ y }_{ 1 }+{ \theta }_{ 1 }x+\frac { { M }_{ 1 }{ x }^{ 2 } }{ 2EI } +\frac
{ { R }_{ 1 }{ x }^{ 3 } }{ 6EI } -\frac { P }{ 6EI } { \left< x-a \right> }^{ 3
}$$ |
Slope 1 [θ1] |
$${ \theta }_{ 1 }=\frac { P{ (L-a) }^{ 2 } }{ 2EI } $$ |
Slope 2 [θ2] |
$${ \theta }_{ 2 }=0$$ |
Slope [θ] |
$$\theta ={ \theta }_{ 1 }+\frac { { M }_{ 1 }x }{ EI } +\frac { { R }_{ 1 }{ x
}^{ 2 } }{ 2EI } -\frac { P }{ 2EI } { \left< x-a \right> }^{ 2 }$$ |
Note: In these formulas, equations in brackets "< >" are singularity
functions.